Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 118(4): 836-845, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31757360

RESUMO

The TRPV1 cation nonselective ion channel plays an essential role in thermosensation and perception of other noxious stimuli. TRPV1 can be activated by low extracellular pH, high temperature, or naturally occurring pungent molecules such as allicin, capsaicin, or resiniferatoxin. Its noxious thermal sensitivity makes it an important participant as a thermal sensor in mammals. However, details of the mechanism of channel activation by increases in temperature remain unclear. Here, we used a combination of approaches to try to understand the role of the ankyrin repeat domain (ARD) in channel behavior. First, a computational modeling approach by coarse-grained molecular dynamics simulation of the whole TRPV1 embedded in a phosphatidylcholine and phosphatidylethanolamine membrane provides insight into the dynamics of this channel domain. Global analysis of the structural ensemble shows that the ARD is a region that sustains high fluctuations during dynamics at different temperatures. We then performed biochemical and thermal stability studies of the purified ARD by the means of circular dichroism and tryptophan fluorescence and demonstrate that this region undergoes structural changes at similar temperatures that lead to TRPV1 activation. Our data suggest that the ARD is a dynamic module and that it may participate in controlling the temperature sensitivity of TRPV1.


Assuntos
Repetição de Anquirina , Canais de Cátion TRPV , Animais , Capsaicina , Temperatura Alta , Humanos , Simulação de Dinâmica Molecular , Canais de Cátion TRPV/metabolismo
2.
FEBS J ; 284(21): 3702-3717, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28898537

RESUMO

Light chain amyloidosis is a lethal disease where vital organs are damaged by the fibrillar aggregation of monoclonal light chains. λ6a is an immunoglobulin light chain encoded by the germ-line gene segment implicated in this disease. AR is a patient-derived germ-line variant with a markedly low thermodynamic stability and prone to form fibrils in vitro in less than an hour. Here, we sought to stabilize this domain by mutating some residues back to the germ-line sequence, and the most stabilizing mutations were the single-mutant AR-F21I and the double-mutant AR-F21/IV104L, both located in the hydrophobic core. While mutation Arg25Gly in 6aJL2 destabilized the domain, mutating Gly25 back to arginine in AR did not contribute to stabilization as expected. Crystallographic structures of AR and 6a-R25G were generated to explain this discrepancy. Finally, 6a-R25G crystals revealed an octameric assembly which was emulated into 6aJL2 and AR crystals by replicating their structural parameters and suggesting a common assembly pattern. DATABASE: The atomic coordinates and structure factors have been deposited in the Protein Data Bank under the accession numbers 5IR3 and 5C9K.


Assuntos
Cadeias lambda de Imunoglobulina/química , Cristalografia por Raios X , Humanos , Cadeias lambda de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/isolamento & purificação , Modelos Moleculares , Domínios Proteicos , Estabilidade Proteica , Desdobramento de Proteína , Termodinâmica
3.
Front Plant Sci ; 8: 497, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28439280

RESUMO

Late embryogenesis abundant (LEA) proteins are part of a large protein family that protect other proteins from aggregation due to desiccation or osmotic stresses. Recently, the Amaranthus cruentus seed proteome was characterized by 2D-PAGE and one highly accumulated protein spot was identified as a LEA protein and was named AcLEA. In this work, AcLEA cDNA was cloned into an expression vector and the recombinant protein was purified and characterized. AcLEA encodes a 172 amino acid polypeptide with a predicted molecular mass of 18.34 kDa and estimated pI of 8.58. Phylogenetic analysis revealed that AcLEA is evolutionarily close to the LEA3 group. Structural characteristics were revealed by nuclear magnetic resonance and circular dichroism methods. We have shown that recombinant AcLEA is an intrinsically disordered protein in solution even at high salinity and osmotic pressures, but it has a strong tendency to take a secondary structure, mainly folded as α-helix, when an inductive additive is present. Recombinant AcLEA function was evaluated using Escherichia coli as in vivo model showing the important protection role against desiccation, oxidant conditions, and osmotic stress. AcLEA recombinant protein was localized in cytoplasm of Nicotiana benthamiana protoplasts and orthologs were detected in seeds of wild and domesticated amaranth species. Interestingly AcLEA was detected in leaves, stems, and roots but only in plants subjected to salt stress. This fact could indicate the important role of AcLEA protection during plant stress in all amaranth species studied.

4.
Protein Expr Purif ; 132: 85-96, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28153773

RESUMO

The essential GTPase Gpn1 mediates RNA polymerase II nuclear targeting and controls microtubule dynamics in yeast and human cells by molecular mechanisms still under investigation. Here, we purified human HisGpn1 expressed as a recombinant protein in bacteria E. coli BL-21 (DE3). Affinity purified HisGpn1 eluted from a size exclusion column as a protein dimer, a state conserved after removing the hexa-histidine tail and confirmed by separating HisGpn1 in native gels, and in dynamic light scattering experiments. Human HisGpn1 purity was higher than 95%, molecularly monodisperse and could be concentrated to more than 10 mg/mL without aggregating. Circular dichroism spectra showed that human HisGpn1 was properly folded and displayed a secondary structure rich in alpha helices. HisGpn1 effectively bound GDP and the non-hydrolyzable GTP analogue GMPPCP, and hydrolyzed GTP. We next tested the importance of the C-terminal tail, present in eukaryotic Gpn1 but not in the ancestral archaeal Gpn protein, on HisGpn1 dimer formation. C-terminal deleted human HisGpn1 (HisGpn1ΔC) was also purified as a protein dimer, indicating that the N-terminal GTPase domain contains the interaction surface needed for dimer formation. In contrast to HisGpn1, however, HisGpn1ΔC dimer spontaneously dissociated into monomers. In conclusion, we have developed a method to purify properly folded and functionally active human HisGpn1 from bacteria, and showed that the C-terminal tail, universally conserved in all eukaryotic Gpn1 orthologues, stabilizes the GTPase domain-mediated Gpn1 protein dimer. The availability of recombinant human Gpn1 will open new research avenues to unveil the molecular and pharmacological properties of this essential GTPase.


Assuntos
Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/isolamento & purificação , Guanosina Trifosfato/química , Multimerização Proteica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/genética , Humanos , Hidrólise , Domínios Proteicos , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
6.
J Biol Chem ; 290(5): 2577-92, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25505244

RESUMO

Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this work, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, the second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40-60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. This mutagenic approach helped to identify key regions implicated in λ3 AL.


Assuntos
Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Cadeias lambda de Imunoglobulina/química , Cadeias lambda de Imunoglobulina/metabolismo , Mutagênese Sítio-Dirigida/métodos , Sequência de Aminoácidos , Amiloidose/metabolismo , Cristalografia por Raios X , Humanos , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...